Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling
نویسندگان
چکیده
Simulated maximum likelihood has proved to be a valuable tool for fitting the log-normal stochastic volatility model to financial returns time series. In this paper, we develop a methodology that generalizes these methods to more general stochastic volatility models that are naturally cast in terms of a positive volatility process. The methodology relies on combining two well known methods for evaluating the likelihood function – Sequential importance sampling and Laplace importance sampling. Two example models are considered, showing that the likelihood function can be evaluated using Monte Carlo methods even for non-Gaussian latent processes such as square-root diffusions. JEL code: C13
منابع مشابه
Automated Likelihood Based Inference for Stochastic Volatility Models∗
In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and compared with some existing methods using both s...
متن کاملA flexible and automated likelihood based framework for inference in stochastic volatility models
The Laplace approximation is used to perform maximum likelihood estimation of univariate and multivariate stochastic volatility (SV) models. It is shown that the implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and comparedwith some existingmaximum likelihoodmethods usin...
متن کاملFitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the Em Algorithm
Stochastic volatility (SV) models have become increasingly popular for explaining the behaviour of financial variables such as stock prices and exchange rates, and their popularity has resulted in several different proposed approaches to estimating the parameters of the model. An important feature of financial data, which is commonly ignored, is the occurrence of irregular sampling because of h...
متن کاملBayesian Dynamic Factor Models and Portfolio Allocation
We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of...
متن کاملAn efficient method for maximum likelihood estimation of a stochastic volatility model
In this paper an efficient, simulation-based, maximum likelihood (ML) method is proposed for estimating Taylor’s stochastic volatility (SV) model. The new method is based on the second order Taylor approximation to the integrand. The approximation enables us to transfer the numerical problem in the Laplace approximation and that in importance sampling into the problem of inverting two high dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012